
Hi everyone, my name is Chuan Yan and today I will introduce our work: Deep 
Sketch Vectorization via Implicit Surface Extraction. This work is a collaboration 
with Yong Li from south China university of technology, Deepali Aneja. Matthew 
Fisher from Adobe, Edgar Simo-serra from Waseda university and Yotam Gingold 
from George Mason university
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Accurately extract the vector lines from raster sketches is a beneficial step for 
many aspects.
First, vector lines and junctions could preserve important information that is 
difficult to extract from bitmaps only such as the artist’s drawing intent, the 2D or 
3D shape .
Also, it is easy to only choose the target strokes and adjust them without 
touching other neighbor strokes. 
A lot of downstream sketch processing applications usually requires vector lines 
as input.
At last, vector lines are necessary for many human vison abstraction and 
expression researches such as sketch retrieval, sketch recognition, etc.
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However, there are still challenges for existing sketch vectorization methods.
The frame field-based methods or fully end-to-end data driven based methods 
are all struggle at extracting accurate vector paths on the sketch regions where 
contains dense strokes.
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And it will be difficult to further reduce the runtime if the raster sketches contain 
complex structures with numerous junctions.
For example, for a 384 x 512 raster sketch, the current methods will take at least 
more than 40 seconds.
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• Vectorization fidelity at dense stroke regions
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384 × 512 79s 

[Bessmeltsev et al. 2019]

69s 

[Mo et al. 2021]

42s 



We have proposed a new sketch vectorization method that provides much higher 
vectorization fidelity and faster execution time.
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Our Solution

• High vectorization f idelity

• Fast running time

[Puhachov et al. 2021]

384 × 512 79s 

[Bessmeltsev et al. 2019]

69s 

[Mo et al. 2021]

42s 
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Additionally, our intermediate vector path representation naturally support 
further interactive topology Refinement if necessary.

But, all results shown in this slides are fully 
automatic unless stated otherwise
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Our Solution

• High vectorization f idelity

• Low algorithm complexity

• Supports interactive Ref inement

384 × 512

[Ours]

4.5s 



We designed our vectorization framework into 3 stages: center line encoding, 
vector line reconstruction and post Refinements
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At the first center line encoding stage, we trained a distance field prediction 
network that extract information such as key point, under sampling map and 
center line from the given raster sketch. 
All this information are encoded as Unsigned Distance Fields.

11

Local Maximum

Threshold

Distance Field Prediction

Raster Sketch

Center LineKey Points Under-Sampling 
Map

Line Reconstruction

Overview
• Center line encoding: (a) Distance Field Prediction

• Line reconstruction: (b) Neural Dual Contouring & Topology Refinement

• Post processing: (c) Dual Contouring Down Sampling & Line Grouping



Then we trained another network to reconstruct initial vector paths from the 
encoded center line which is predicted in our first stage. 
After getting the initial vector lines, its junctions will be automatically refined 
based on the predicted key point and under sampling maps.
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At last, to further refine the output. 
we proposed a dual contouring down sampling method and a simple line 
grouping method to turn vector segments into vector strokes with optimized file 
size.
Now let’s dive into the technical details
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One of our core contribution is that we formulate the sketch vectorization as an 
implicit surface reconstruction task which is Dual Contouring in our method. 
Therefore, we will briefly review its reconstruction logic in 2D first.

Given a target vector sketch, we sampled the canvas into a bunch of evenly 
distributed grids.

For each grid, we compute the closest distance from the grid center to the vector 
paths as an Unsigned Distance field. 
Since this field implicitly encoded the vector path as a 2D surface, we can use 
dual contouring to reconstruct it as vector segments based on this field.

To be more specific, we could infer the edge flags and edge vertex from it. 
The edge flag records the intersection between the target vector sketch and grid 
edge. 
And the edge vertex in each grid is set onto the vector sketch if the grid contains 
single vector path. 
Each grid could only have one edge vertex.
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Then the reconstruction will be simply connecting any 2 neighbor vertices if their 
shared grid edge has a flag.

However, this reconstruction could be inaccurate since our sampling rate in the 
vector space is not enough. 

And it is theoretically impossible to reconstruct the high-valence 

junctions with dual contouring. We termed those regions as 
under sampled regions.

To solve this problem, we detect those under sampled regions and extract the 
junction key points
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Then we can make correction by dropping all the line segments in the under 
sampled regions and rebuild the junction by connecting the key point to the all 
the truncations.

To sum up, to get the reconstructed vector sketch, we need derive this 5 
information which are our training ground truth from a given target vector sketch.

The upper 3 are the ground truth for our distance filed prediction network, the 
lower 2 is the ground truth for our line reconstruction network.

It is also worth noting that although the reconstructed vector sketch is not equal 
to the target vector sketch, this design of intermediate vector representation 
could greatly reduce the training difficulty and naturally support interactive 
junction Refinement.
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We then create our dataset with 63k vector sketches from public dataset then 
rasterize them with 7 different brush styles. This ends up with 441k raster 
sketches as our training data. One group of the raster sketch examples is shown 
below.
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Distance Field Prediction

• Dataset

• 10,000 and 53,000 vector sketches from the Quick 

Draw! and Creative Sketch [Ge et al. 2021]

• 441,000 raster sketches in total

(a) Basic (b) Marker A (c) Marker B (d) Ink A (f) Pencil(e) Ink B(b) Calligraphy



we formulated this distance field prediction as an image-to-image translation 
task and trained a U-Net like network based on the created data.
We using the masked L1 distance as our training loss to predict 3 type of 
unsigned distance fields that encoding the centerlines, under sampled maps 
and key points, respectively.
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To reduce the number of under sampled regions and improve the smoothness of 
the reconstructed curve, we doubled the resolution of the output unsigned 
distance field which equivalent to double the sampling rate in the vector domain.  
This will also lead the resolution increase for both corresponding edge flags and 
edge vertex.
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Distance Field Prediction

• Sub-Pixel Sampling

• 2x size of prediction output and ground truth 

• Fewer under-sampled region

• Higher precision



Then we adapt recent Neural Dual Contouring and applied a series of 
modifications which particularly optimized for 2D vectorization task.
Please see our paper for more details.
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Now I’m going to give more details about the logic how we refine the topology.

Given a target vector sketch with sampled 4 by 4 grids, we could easily find that 
the reconstructed vector lines can’t preserve the x junction even all edge flags 
are correctly predicted. Because there exists under sampled issue
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Now I’m going to give more details about the logic how we refine the topology.

Given a target vector sketch with sampled as 4 by 4 grids, we could easily find 
that the reconstructed vector lines can’t preserve the x junction even all edge 
flags are correctly predicted. 
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But we can still fix this by predicting a under sampling map along with the x 
junction key point.
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We remove all the line segments that inside the under-sampling map, then 
connect the all truncations to the predicted key point
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While reconstructing the high valence junction, or star junction in other word, is a 
historically challenging problem.
Our Refinement method provides one simple solution to it.
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Neural Dual Contouring & Topology Refinement

• Reconstruct star junction

(a) Input

(e) Our Result

(c) [Bessmeltsev et al. 2019]

(d) [Puhachov et al. 2021]

(b) [Mo et al. 2021]

(f) USM & Key point 



Then to further reduce the number of unnecessary vector segments, we 
proposed an under-sampled map based dual contouring down sampling method
To turn vector segments into strokes, we proposed a simple line grouping 
method that iteratively fining shortest paths. 
For more details, please check out our paper
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Dual Contouring Downsampling & Line Grouping

• Under-Sampled Map-based Dual Contouring Downsampling

• Line Grouping

• Start with each end point

• Iteratively find shortest path 

• Repeat until all lines have been visited



We used our sketch clean up benchmark to create a vectorization test set. The 

test set contains 369 clean raster sketches with their vector 
ground truth. 
Then we compared our method with others using 
metrics such as chamfer distance, running time under 6 
different input sketch resolution levels. 
Please note that all metrics along the y–axis are log 
scaled

The experiment show our method consistently performs better and run faster 
than all other methods.
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We used our sketch clean up benchmark to create a vectorization test set. The 
test set contains 369 clean raster sketches with their vector ground truth. 
Then we compared our method with others using metrics such as chamfer distance, 
running time under 6 different input sketch resolution levels. 
The experiment show our method consistently performs better and run faster 
than all other methods.
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• 2x–10x faster



Here we show a comparison of vectorization results
As we can see our method faithfully captured much more detail for even a tiny 
portion of the raster sketch
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We also tested all methods with another test set which contains 112 rough 
sketches in the wild, this comparison further shows our method’s capacity of 
capturing stroke details.
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It is also worth mentioning that our method could successfully vectorize all 
rough sketches with faster speed compared to the frame filed based methods
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Here are two more vectorization results on complex rough sketches that only our 
method could vectorize. Please note that the zoom in region is only about 1/50 to 
1/25 of the full sketch.
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Here are two more vectorization results on complex rough sketches that only our 
method could vectorize. Please note that the zoom in region is only about 1/50 to 
1/25 of the full sketch.
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Here is one failure case that shows the limitations of our method.
Our methods will output broken and messy lines when the input sketch contains 
densely repeated strokes or very thick strokes. 
Although this vectorization result could be improved by either down sample the 
input raster sketch or apply pre-processing such as line extraction.
We believe the fundamental reason for this limitation should be our pair-wised 
training strategy which makes our network struggling when predicting the center 
lines and junctions for those type of strokes.
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Limitations

(a) Input (b) Output from raw 
size

(c) Output from 2x downscaling (d) Output from line-
extraction pre-

processing



In the future, we can consider an adaptive sampling 

rate, enforce more natural junctions, and vectorize 
more stroke attributes.
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Future Work

• Adaptive sampling rate

• Enforce prediction naturalness at junctions  

• Vectorize more stroke attributions

• Stroke thickness

• Color

• Texture



At last, I want to say thanks for all my collaborators and thank you for your 
listening.
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